Skip to content
Pasqal Documentation

Drive Shaping Methods

import torch
from qubosolver.qubo_instance import QUBOInstance
from qubosolver.config import SolverConfig, DriveShapingConfig
from qubosolver.qubo_types import DriveType
from qubosolver.solver import QuboSolver
import matplotlib.pyplot as plt
plt.rcParams["animation.html"] = "jshtml"
%matplotlib inline
coefficients = torch.tensor([[-1.0, 0.5, 0.2], [0.5, -2.0, 0.3], [0.2, 0.3, -3.0]])
instance = QUBOInstance(coefficients)

Default method

default_config = SolverConfig.from_kwargs(
use_quantum=True, drive_shaping=DriveShapingConfig(drive_shaping_method=DriveType.ADIABATIC),
)
solver = QuboSolver(instance, default_config)
solution = solver.solve()
print(solution)
embedding = solver.embedding()
drive = solver.drive(embedding)[0]
solver.draw_sequence(drive, embedding)

For the OPTIMIZED drive shaping, we have the following parameters:

  • optimized_n_calls: Number of calls for the optimization process.
  • optimized_re_execute_opt_drive: Whether to re-run the optimal drive sequence after optimization.
  • optimized_initial_omega_parameters: Default initial omega parameters for the drive. Defaults to (5, 10, 5).
  • optimized_initial_detuning_parameters: Default initial detuning parameters for the drive. Defaults to (-10, 0, 10).
default_config = SolverConfig.from_kwargs(
use_quantum=True, drive_shaping=DriveShapingConfig(drive_shaping_method=DriveType.OPTIMIZED),
)
solver = QuboSolver(instance, default_config)
solution = solver.solve()
print(solution)
default_config = SolverConfig.from_kwargs(
use_quantum=True, drive_shaping=DriveShapingConfig(drive_shaping_method=DriveType.OPTIMIZED, optimized_n_calls=13),
)
solver = QuboSolver(instance, default_config)
solution = solver.solve()
print(solution)

Initial parameters of the optimization procedure can be changed as optimized_initial_omega_parameters and optimized_initial_detuning_parameters

default_config = SolverConfig.from_kwargs(
use_quantum=True, drive_shaping=DriveShapingConfig(drive_shaping_method=DriveType.OPTIMIZED, optimized_initial_omega_parameters=[2.0, 15.0, 5.0,], optimized_initial_detuning_parameters=[-45.0, 0.0, 25.0]),
)
solver = QuboSolver(instance, default_config)
solution = solver.solve()
print(solution)
default_config = SolverConfig.from_kwargs(
use_quantum=True, drive_shaping=DriveShapingConfig(drive_shaping_method=DriveType.OPTIMIZED, optimized_re_execute_opt_drive=True),
)
solver = QuboSolver(instance, default_config)
solution = solver.solve()
print(solution)

One can change the drive shaping method by incorporating custom functions for:

  • Evaluating a candidate bitstring and QUBO via optimized_custom_qubo_cost
  • Performing optimization with a different objective than the best cost via optimized_custom_objective
  • Adding callback functions via optimized_callback_objective.
from qubosolver.utils.qubo_eval import calculate_qubo_cost
# example of penalization
def penalized_qubo(bitstring: str, QUBO: torch.Tensor) -> float:
return calculate_qubo_cost(bitstring, QUBO) + 2 * bitstring.count("0")
# example of saving intermediate results
opt_results = list()
def callback(d: dict) -> None:
opt_results.append(d)
# example of using an average cost
def average_ojective(
bitstrings: list,
counts: list,
probabilities: list,
costs: list,
best_cost: float,
best_bitstring: str,
) -> float:
return sum([p * c for p, c in zip(probabilities, costs)])
drive_shaping=DriveShapingConfig(drive_shaping_method=DriveType.OPTIMIZED,
optimized_re_execute_opt_drive=True,
optimized_custom_qubo_cost=penalized_qubo,
optimized_callback_objective=callback,
optimized_custom_objective = average_ojective,
)
config = SolverConfig(
use_quantum=True,
drive_shaping=drive_shaping,
)
solver = QuboSolver(instance, config)
solution = solver.solve()
len(opt_results), opt_results[-1]
solution